Add like
Add dislike
Add to saved papers

Synergistic interaction between C5a and NOD2 signaling in the regulation of chemokine expression in RAW 264.7 macrophages.

The innate immune response is a complex process involving multiple pathogen-recognition receptors, including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors. Complement is also a critical component of innate immunity. While complement is known to interact with TLR-mediated signals, the interactions between NOD-like receptors and complement are not well understood. Here we report a synergistic interaction between C5a and Nod2 signaling in RAW 264.7 macrophages. Long-term treatment with muramyl dipeptide (MDP), a NOD2 ligand, enhanced C5a-mediated expression of chemokine mRNAs in RAW 264.7 cells. This response was dependent on NOD2 expression and was associated with a decrease in expression of C5L2, a receptor for C5a which acts as a negative modulator of C5a receptor (C5aR) activity. MDP amplified C5a-mediated phosphorylation of p38 MAPK. Treatment of RAW264.7 cells with an inhibitor of p38 attenuated the synergistic effects of C5a on MDP-primed cells on MIP-2, but not MCP-1, mRNA. In contrast, inhibition of AKT prevented C5a stimulation of MCP-1, but not MIP-2, mRNA, in MDP-primed cells. Taken together, these data demonstrated a synergistic interaction between C5a and NOD2 in the regulation of chemokine expression in macrophages, associated with a down-regulation of C5L2, a negative regulator of C5a receptor activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app