JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Caspase-3 cleavage of dishevelled induces elimination of postsynaptic structures.

Developmental Cell 2014 March 32
During the development of vertebrate neuromuscular junction (NMJ), agrin stabilizes, whereas acetylcholine (ACh) destabilizes AChR clusters, leading to the refinement of synaptic connections. The intracellular mechanism underlying this counteractive interaction remains elusive. Here, we show that caspase-3, the effector protease involved in apoptosis, mediates elimination of AChR clusters. We found that caspase-3 was activated by cholinergic stimulation of cultured muscle cells without inducing cell apoptosis and that this activation was prevented by agrin. Interestingly, inhibition of caspase-3 attenuated ACh agonist-induced dispersion of AChR clusters. Furthermore, we identified Dishevelled1 (Dvl1), a Wnt signaling protein involved in AChR clustering, as the substrate of caspase-3. Blocking Dvl1 cleavage prevented induced dispersion of AChR clusters. Finally, inhibition or genetic ablation of caspase-3 or expression of a caspase-3-resistant form of Dvl1 caused stabilization of aneural AChR clusters. Thus, caspase-3 plays an important role in the elimination of postsynaptic structures during the development of NMJs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app