Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase.

Neuron 2014 April 3
Complement receptor 3 (CR3) activation in microglia is involved in neuroinflammation-related brain disorders and pruning of neuronal synapses. Hypoxia, often observed together with neuroinflammation in brain trauma, stroke, and neurodegenerative diseases, is thought to exacerbate inflammatory responses and synergistically enhance brain damage. Here we show that when hypoxia and an inflammatory stimulus (lipopolysaccharide [LPS]) are combined, they act synergistically to trigger long-term synaptic depression (LTD) that requires microglial CR3, activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and GluA2-mediated A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Microglial CR3-triggered LTD is independent of N-methyl-D-aspartate receptors (NMDARs), metabotropic glutamate receptors (mGluRs), or patterned synaptic activity. This type of LTD may contribute to memory impairments and synaptic disruptions in neuroinflammation-related brain disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app