Add like
Add dislike
Add to saved papers

EPR spectroscopy as a predictive tool for the assessment of marginal donor livers perfused on a normothermic ex vivo perfusion circuit.

Liver transplantation is a highly successful treatment for end-stage liver disease. While liver transplantation is often the only effective treatment for cirrhosis there is a critical shortage of donor organs, leading to death of many potential recipients on the waiting list. Marginal liver grafts are increasingly being used in an attempt to increase the number of donor livers utilized for transplantation. Marginal donor livers often have complications and worse outcomes for recipients receiving these types of transplant. The ability to predict the outcome with the use of marginal grafts is difficult and often imprecise leading decreased use of potentially suitable grafts. The development and maturation of normothermic ex vivo perfusion as a platform for the assessment of donor organs presents an opportunity to increase the number of usable donor livers available for transplantation. Furthermore, direct measurement of reactive oxygen species (ROS) present in the donor liver on an ex vivo perfusion circuit by electron paramagnetic resonance (EPR) spectroscopy would allow for precise real-time quantification of donor organ injury. The combination normothermic ex vivo liver perfusion with EPR spectroscopy could therefore present a powerful platform to increase the number of donor organs utilized for transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app