JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Carbohydrate coingestion delays dietary protein digestion and absorption but does not modulate postprandial muscle protein accretion.

BACKGROUND: Dietary protein digestion and absorption is an important factor modulating muscle protein accretion. However, there are few data available on the effects of coingesting other macronutrients with protein on digestion and absorption kinetics and the subsequent muscle protein synthetic response.

OBJECTIVE: The objective of the study was to determine the impact of carbohydrate coingestion with protein on dietary protein digestion and absorption and muscle protein accretion in healthy young and older men.

DESIGN: Twenty-four healthy young (aged 21± 1 y, body mass index 21.8 ±0.5 kg/m(2)) and 25 older (aged 75 ± 1 y, body mass index 25.4 ± 0.6 kg/m(2)) men received a primed continuous L-[ring-(2)H5]-phenylalanine and L-[ring-3,5-(2)H2]-tyrosine infusion and ingested 20 g intrinsically L-[1-(13)C]-phenylalanine-labeled protein with (Pro+CHO) or without (Pro) 60 g carbohydrate. Plasma samples and muscle biopsies were collected in a postabsorptive and postprandial state.

RESULTS: Carbohydrate coingestion delayed the appearance of exogenous phenylalanine in the circulation (P = .001). Dietary protein-derived phenylalanine availability over the 5-hour postprandial period was lower in the older (62 ± 2%) when compared with the young subjects (74 ± 2%; P = .007), with no differences between conditions (P = .20). Carbohydrate coingestion did not modulate postprandial muscle protein synthesis rates (0.035 ± 0.003 vs 0.043 ± 0.004 and 0.033 ± 0.002 vs 0.035 ± 0.003%/h after Pro vs Pro+CHO in the young and older group, respectively). In accordance, no differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed between conditions (0.020 ± 0.002 vs 0.020 ± 0.002 and 0.019 ± 0.003 vs 0.022 ± 0.004 mole percent excess after Pro vs Pro+CHO in the young and older subjects, respectively).

CONCLUSION: Carbohydrate coingestion with protein delays dietary protein digestion and absorption but does not modulate postprandial muscle protein accretion in healthy young or older men.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app