Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Clinical value of a self-designed training model for pinpointing and puncturing trigeminal ganglion.

OBJECTIVES. A training model was designed for learners and young physicians to polish their skills in clinical practices of pinpointing and puncturing trigeminal ganglion. METHODS. A head model, on both cheeks of which the deep soft tissue was replaced by stuffed organosilicone and sponge while the superficial soft tissue, skin and the trigeminal ganglion were made of organic silicon rubber for an appearance of real human being, was made from a dried skull specimen and epoxy resin. Two physicians who had experiences in puncturing foramen ovale and trigeminal ganglion were selected to test the model, mainly for its appearance, X-ray permeability, handling of the puncture, and closure of the puncture sites. Four inexperienced physicians were selected afterwards to be trained combining Hartel's anterior facial approach with the new method of real-time observation on foramen ovale studied by us. RESULTS. Both appearance and texture of the model were extremely close to those of a real human. The fact that the skin, superficial soft tissue, deep muscles of the cheeks, and the trigeminal ganglion made of organic silicon rubber all had great elasticity resulted in quick closure and sealing of the puncture sites. The head model made of epoxy resin had similar X-ray permeability to a human skull specimen under fluoroscopy. The soft tissue was made of radiolucent material so that the training can be conducted with X-ray guidance. After repeated training, all the four young physicians were able to smoothly and successfully accomplish the puncture. CONCLUSION. This self-made model can substitute for cadaver specimen in training learners and young physicians on foramen ovale and trigeminal ganglion puncture. It is very helpful for fast learning and mastering this interventional operation skill, and the puncture accuracy can be improved significantly with our new method of real-time observation on foramen ovale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app