Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma.

Glioblastoma multiforme (GBM), which account for more than 50% of all gliomas, is among the deadliest of all human cancers. Given the dismal prognosis of GBM, it would be advantageous to identify early biomarkers of a response to therapy to avoid continuing ineffective treatments and to initiate other therapeutic strategies. The present in vivo longitudinal study in an orthotopic mouse model demonstrates quantitative assessment of early treatment response during short-term chemotherapy with temozolomide (TMZ) by amide proton transfer (APT) imaging. In a GBM line, only one course of TMZ (3 d exposure and 4 d rest) at a dose of 80 mg/kg resulted in substantial reduction in APT signal compared with untreated control animals, in which the APT signal continued to increase. Although there were no detectable differences in tumor volume, cell density, or apoptosis rate between groups, levels of Ki67 (index of cell proliferation) were substantially reduced in treated tumors. In another TMZ-resistant GBM line, the APT signal and levels of Ki67 increased despite the same course of TMZ treatment. As metabolite changes are known to occur early in the time course of chemotherapy and precede morphologic changes, these results suggest that the APT signal in glioma may be a useful functional biomarker of treatment response or degree of tumor progression. Thus, APT imaging may serve as a sensitive biomarker of early treatment response and could potentially replace invasive biopsies to provide a definitive diagnosis. This would have a major impact on the clinical management of patients with glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app