JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants.

Protein Science 2014 June
The features in partially folded intermediates that allow the group II chaperonins to distinguish partially folded from native states remain unclear. The archaeal group II chaperonin from Methanococcus Mauripaludis (Mm-Cpn) assists the in vitro refolding of the well-characterized β-sheet lens protein human γD-crystallin (HγD-Crys). The domain interface and buried cores of this Greek key conformation include side chains, which might be exposed in partially folded intermediates. We sought to assess whether particular features buried in the native state, but absent from the native protein surface, might serve as recognition signals. The features tested were (a) paired aromatic side chains, (b) side chains in the interface between the duplicated domains of HγD-Crys, and (c) side chains in the buried core which result in congenital cataract when substituted. We tested the Mm-Cpn suppression of aggregation of these HγD-Crys mutants upon dilution out of denaturant. Mm-Cpn was capable of suppressing the off-pathway aggregation of the three classes of mutants indicating that the buried residues were not recognition signals. In fact, Mm-Cpn recognized the HγD-Crys mutants better than (wild-type) WT and refolded most mutant HγD-Crys to levels twice that of WT HγD-Crys. This presumably represents the increased population or longer lifetimes of the partially folded intermediates of the mutant proteins. The results suggest that Mm-Cpn does not recognize the features of HγD-Crys tested-paired aromatics, exposed domain interface, or destabilized core-but rather recognizes other features of the partially folded β-sheet conformation that are absent or inaccessible in the native state of HγD-Crys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app