Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transdermal enhancement effect and mechanism of iontophoresis for non-steroidal anti-inflammatory drugs.

Iontophoresis is an important approach to improve transdermal drug delivery. However, The transdermal enhancement mechanism of iontophoresis was not well known. The relationship between the physicochemical properties of drugs and the transdermal enhancement effect of iontophoresis was revealed in this study. Non-steroidal anti-inflammatory drugs (NSAIDs) were used as the models, including aspirin, ibuprofen and indomethacin. Their oil-water partition coefficients were measured. The carbomer-based hydrogels of them were prepared. Iontophoresis significantly enhanced in vitro transdermal delivery across the rat skins. Strong lipophilicity could lead to high permeation of drugs. However, the dissociation extent (indicated as pKa) of drugs was the key factor to determine the transdermal enhancement effect of iontophoresis. The more dissociation the drugs were, the higher the transdermal enhancement effect of iontophoresis. The drug-loaded hydrogels combined with iontophoresis improved the treatment of rat raw's inflammatory syndrome. Iontophoresis significantly improved the drugs penetrating into the hypodermis, dermis and epidermis, more deeply than the application of drugs alone according to the experimental result of 5-carboxylfluorescein hydrogels. Iontophoresis led to the unordered arrangement of skin intercellular lipids, the significantly increased flowability and loose stratum corneum structure. Iontophoresis is a promising approach to improve transdermal drug delivery with safety and high efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app