Add like
Add dislike
Add to saved papers

Thermal effects of endoscopy in a human temporal bone model: implications for endoscopic ear surgery.

Laryngoscope 2014 August
OBJECTIVES/HYPOTHESIS: Although the theoretical risk of elevated temperatures during endoscopic ear surgery has been reported previously, neither temperature change nor heat distribution associated with the endoscope has been quantified. In this study, we measure temperature changes during rigid middle ear endoscopy in a human temporal bone model and investigate whether suction can act as a significant cooling mechanism.

STUDY DESIGN: Human temporal bone model of endoscopic middle ear surgery.

METHODS: Fresh human temporal bones were maintained at body temperature (∼ 36°C). Temperature fluctuations were measured as a function of 1) distance between the tip of a 3-mm 0° Hopkins rod and round window membrane, and 2) intensity of the light source. Infrared imaging determined the thermal gradient. For suction, a 20-Fr suction catheter was utilized.

RESULTS: We found: 1) an endoscope maximally powered by a xenon or light-emitting diode light source resulted in a rapid temperature elevation up to 46°C within 0.5 to 1 mm from the tip of the endoscope within 30 to 124 seconds, 2) elevated temperatures occurred up to 8 mm from the endoscope tip; and 3) temperature decreased rapidly within 20 to 88 seconds of turning off the light source or applying suction.

CONCLUSIONS: Our findings have direct implications for avoiding excessive temperature elevation in endoscopic ear surgery. We recommend: 1) using submaximal light intensity, 2) frequent repositioning of the endoscope, and 3) removing the endoscope to allow tissue cooling. Use of suction provides rapid cooling of the middle ear space and may be incorporated in the design of new instrumentation for prolonged dissection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app