JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli.

ACS Nano 2014 April 23
Self-templated protein aggregation and intracerebral deposition of aggregates, sometimes in the form of amyloid fibrils, is a hallmark of mammalian prion diseases. What distinguishes amyloid fibrils formed by prions from those formed by other proteins is not clear. On the basis of previous studies on yeast prions that correlated high intrinsic fragmentation rates of fibrils with prion propagation efficiency, it has been hypothesized that the nanomechanical properties of prion amyloid such as strength and elastic modulus may be the distinguishing feature. Here, we reveal that fibrils formed by mammalian prions are relatively soft and clearly in a different class of rigidities when compared to nanofibrils formed by nonprions. We found that amyloid fibrils made of both wild-type and mutant mouse recombinant PrP(23-231) have remarkably low axial elastic moduli of 0.1-1.4 GPa. We demonstrate that even the proteinase K resistant core of these fibrils has similarly low intrinsic rigidities. Using a new mode of atomic force microscopy called AM-FM mode, we estimated the radial modulus of PrP fibrils at ∼0.6 GPa, consistent with the axial moduli derived by using an ensemble method. Our results have far-reaching implications for the understanding of protein-based infectivity and the design of amyloid biomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app