JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Podocyte-specific VEGF-a gain of function induces nodular glomerulosclerosis in eNOS null mice.

VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF(164) gain of function in eNOS(-/-) mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF(164) gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS(-/-) mice with podocyte-specific VEGF(164) gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF(164) gain of function decreased glomerular S-nitrosylation of laminin in eNOS(-/-) mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson-like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app