Add like
Add dislike
Add to saved papers

Isolation of a pure octadecasaccharide with antithrombin activity from an ultra-low-molecular-weight heparin.

Heparin and low-molecular-weight heparins (LMWHs) are anticoagulant drugs that mainly inhibit the coagulation cascade by indirectly interacting with factor Xa and factor IIa (thrombin). Inhibition of factor Xa by antithrombin (AT) requires the activation of AT by specific pentasaccharide sequences containing 3-O-sulfated glucosamine. Activated AT also inhibits thrombin by forming a stable ternary complex of AT, thrombin, and a polysaccharide (requires at least an 18-mer/octadeca-mer polysaccharide). The full structure of any naturally occurring octadecasaccharide sequence has yet to be determined. In the context of the development of LMWH biosimilars, structural data on such important biological mediators could be helpful for better understanding and regulatory handling of these drugs. Here we present the isolation and identification of an octadecasaccharide with very high anti-factor Xa activity (∼3 times higher than USP [U.S. Pharmacopeia] heparin). The octadecasaccharide was purified using five sequential chromatographic methods with orthogonal specificity, including gel permeation, AT affinity, strong anion exchange, and ion-pair chromatography. The structure of the octadecasaccharide was determined by controlled enzymatic sequencing and nuclear magnetic resonance (NMR). The isolated octadecasaccharide contained three consecutive AT-binding sites and was tested in coagulation assays to determine its biological activity. The isolation of this octadecasaccharide provides new insights into the modulation of thrombin activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app