Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exploiting cell metabolism for biocatalytic whole-cell transamination by recombinant Saccharomyces cerevisiae.

The potential of Saccharomyces cerevisiae for biocatalytic whole-cell transamination was investigated using the kinetic resolution of racemic 1-phenylethylamine (1-PEA) to (R)-1-PEA as a model reaction. As native yeast do not possess any ω-transaminase activity for the reaction, a recombinant yeast biocatalyst was constructed by overexpressing the gene coding for vanillin aminotransferase from Capsicum chinense. The yeast-based biocatalyst could use glucose as the sole co-substrate for the supply of amine acceptor via cell metabolism. In addition, the biocatalyst was functional without addition of the co-factor pyridoxal-5'-phosphate (PLP), which can be explained by a high inherent cellular capacity to sustain PLP-dependent reactions in living cells. In contrast, external PLP supplementation was required when cell viability was low, as it was the case when using pyruvate as a co-substrate. Overall, the results indicate a potential for engineered S. cerevisiae as a biocatalyst for whole-cell transamination and with glucose as the only co-substrate for the supply of amine acceptor and PLP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app