JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.

The proximal renal epithelia express three different Na-dependent inorganic phosphate (Pi) cotransporters: NaPi-IIa/SLC34A1, NaPi-IIc/SLC34A3, and PiT2/SLC20A2. Constitutive mouse knockout models of NaPi-IIa and NaPi-IIc suggested that NaPi-IIa mediates the bulk of renal reabsorption of Pi whereas the contribution of NaPi-IIc to this process is minor and probably restricted to young mice. However, many reports indicate that mutations of NaPi-IIc in humans lead to hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report the generation of a kidney-specific and inducible NaPi-IIc-deficient mouse model based on the loxP-Cre system. We found that the specific removal of the cotransporter from the kidneys of young mice does not impair the capacity of the renal epithelia to transport Pi. Moreover, the levels of Pi in plasma and urine as well as the circulating levels of parathyroid hormone, FGF-23, and vitamin D3 remained unchanged. These findings are in agreement with the data obtained with the constitutive knockout model and suggest that, under steady-state conditions of normal dietary Pi, NaPi-IIc is not an essential Na-Pi cotransporter in murine kidneys. However, and unlike the constitutive mutants, the kidney-specific depletion of NaPi-IIc does not result in alteration of the homeostasis of calcium. This suggests that the calcium-related phenotype observed in constitutive knockout mice may not be related to inactivation of the cotransporter in kidney.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app