JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SPARC silencing inhibits the growth of acute myeloid leukemia transformed from myelodysplastic syndrome via induction of cell cycle arrest and apoptosis.

Secreted protein acidic and rich in cysteine (SPARC) plays key roles in erythropoiesis; haploinsufficiency of SPARC is implicated in the progression of the 5q- syndrome. However, the role of SPARC in other subtypes of myelodysplastic syndrome (MDS) is not fully understood, particularly in the del(5q) type with a complex karyotype, which has a high risk to transform into acute myeloid leukemia (AML). In the present study, we investigated the role of SPARC in the proliferation and apoptosis of SKM-1 cells, an acute myeloid leukemia cell line transformed from an MDS cell line. SKM-1 cells were infected with SPARC-RNAi-LV or NC-GFP-LV lentivirus. Apoptosis and cell cycle profiling were assessed by flow cytometry, and cell proliferation was evaluated by MTS assay. The mRNA and protein expression levels of SPARC, p53, caspase-3, caspase-9 and Fas were detected by RT-PCR, real-time PCR and western blot assay. The SPARC shRNA constructed by us led to a significant reduction in SPARC expression in SKM-1 cells. SPARC knockdown inhibited the proliferation of SKM-1 cells by inducing cell cycle arrest at the G1/G0 phase and apoptosis. SPARC knockdown elevated the expression of p53, caspase-9, caspase-3 and Fas at both the mRNA and protein levels. SPARC silencing inhibited the growth of AML transformed from MDS by activating p53-induced apoptosis and cell cycle arrest. These data indicate that SPARC acts as an oncogene in transformed MDS/AML and is a potential therapeutic target in MDS/AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app