JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lung endothelial barrier disruption in Lyl1-deficient mice.

Maturation of newly formed vessels is a multistep phenomenon during which functional endothelial barriers are established. Disruption of vessel integrity is an important feature in many physiological and pathological processes. We previously reported that lymphoblastic leukemia-derived sequence 1 (LYL1) is required for the late stages of postnatal angiogenesis to limit the formation of new blood vessels, notably by regulating the activity of the small GTPase Rap1. In this study, we show that LYL1 is also required during the formation of the mature endothelial barrier in the lungs of adult mice. Specifically, LYL1 knockdown in human endothelial cells downregulated the expression of ARHGAP21 and ARHGAP24, which encode two Rho GTPase-activating proteins, and this was correlated with increased RhoA activity and reorganization of the actin cytoskeleton into stress fibers. Importantly, in lungs of Lyl1-deficient mice, both vascular endothelial (VE)-cadherin and p120-catenin were poorly recruited to endothelial adherens junctions, indicative of defective cell-cell junctions. Consistent with this, higher Evans blue dye extravasation, edema, and leukocyte infiltration in the lung parenchyma of Lyl1-/- mice than in wild-type littermates confirmed that lung vascular permeability is constitutively elevated in Lyl1-/- adult mice. Our data show that LYL1 acts as a stabilizing signal for adherens junction formation by operating upstream of VE-cadherin and of the two GTPases Rap1 and RhoA. As increased vascular permeability is a key feature and a major mechanism of acute respiratory distress syndrome, molecules that regulate LYL1 activity could represent additional tools to modify the endothelial barrier permeability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app