JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methane production from marine microalgae Isochrysis galbana.

Methane production from marine microalgae Isochrysis galbana was assessed before and after mechanical and chemical pretreatments. Mechanical pretreatment resulted in a 61.7% increase in soluble Chemical Oxygen Demand. Different hydrolysis conditions were evaluated by varying temperature - T, sulfuric acid concentration - AC and biomass suspension concentration (measured as particulate COD - CODp) using an experimental design. The most significant interaction occurred between AC and T and the hydrolysis condition that showed the best result in the anaerobic digestion step was the condition at 40°C with addition of 0.2% (v/v) acid for 16h (9.27LCH4/kgVS). The low methane yields were attributed to inhibitory sodium concentrations for anaerobic digestion. Eliminating inhibitory sodium in the anaerobic digestion by biomass prewashing, there was a 71.5% increase in methane yield for biomass after acid hydrolysis, demonstrating the need for pretreatment and reduction in sodium concentration in the anaerobic digestion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app