Add like
Add dislike
Add to saved papers

The Ca(2+)/H(+) antiporter TMEM165 expression, localization in the developing, lactating and involuting mammary gland parallels the secretory pathway Ca(2+) ATPase (SPCA1).

Plasma membrane Ca(2+)-ATPase 2 (PMCA2) knockout mice showed that ~60% of calcium in milk is transported across the mammary cells apical membrane by PMCA2. The remaining milk calcium is thought to arrive via the secretory pathway through the actions of secretory pathway Ca(2+)-ATPase's 1 and/or 2 (SPCA1 and 2). However, another secretory pathway calcium transporter was recently described. The question becomes whether this Golgi Ca(2+)/H(+) antiporter (TMEM165) is expressed sufficiently in the Golgi of lactating mammary tissue to be a relevant contributor to secretory pathway mammary calcium transport. TMEM165 shows marked expression on day one of lactation when compared to timepoints prepartum. At peak lactation TMEM165 expression was 25 times greater than that of early pregnancy. Forced cessation of lactation resulted in a rapid ~50% decline in TMEM165 expression at 24h of involution and TMEM165 expression declined 95% at 96 h involution. It is clear that the timing, magnitude of TMEM165 expression and its Golgi location supports a role for this Golgi Ca2(+)/H(+) antiporter as a contributor to mammary Golgi calcium transport needs, in addition to the better-characterized roles of SPCA1&2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app