JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preferential induction of CYP1A1 over CYP1B1 in human breast cancer MCF-7 cells after exposure to berberine.

Estrogens are considered the major breast cancer risk factor, and the carcinogenic potential of estrogens might be attributed to the DNA modification caused by derivatives formed during metabolism. 17β-estradiol (E2), the main steroidal estrogen present in women, is metabolized via two major pathways: formation of the 2-hydroxyestradiol (2-OH E2) and 4-hydroxyestradiol (4-OH E2) through the action of Cytochrome P450 (CYP) 1A1 and 1B1, respectively. Previous reports suggested that 2-OH E2 have putative protective effects, while 4-OH E2 is genotoxic and has potent carcinogenic activity. Thus, the ratio of 2-OH E2/4-OH E2 is a critical determinant of the toxicity of E2 in mammary cells. In the present study, we investigated the effects of the berberine on the expression profile of the estrogen metabolizing enzymes CYP1A1 and CYP1B1 in breast cancer MCF-7 cells. Berberine treatment produced significant induction of both forms at the level of mRNA expression, but with increased doses produced 16~ to 52~fold greater inductions of CYP1A1 mRNA over CYP1B1 mRNA. Furthermore, berberine dramatically increased CYP1A1 protein levels but did not influence CYP1B1 protein levels in MCF-7 cells. In conclusion, we present the first report to show that berberine may provide protection against breast cancer by altering the ratio of CYP1A1/CYP1B1, could redirect E2 metabolism in a more protective pathway in the breast cancer MCF-7 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app