Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species.

Changes in serotonin (5-hydroxytryptamine, 5-HT) content in the gut of patients with inflammatory bowel disease (IBD) and animal models of colitis suggest an important role of 5-HT in the pathogenesis of IBD. In this study, we examined the role and mechanism of action of 5-HT in the inflammatory response of colon epithelial cells in vitro and in vivo. In colon epithelial cells (CCD 841, HT-29, Caco-2), direct application of 5-HT induced production of reactive oxygen species (ROS) and monocyte-epithelial adhesion, an initial event of inflammation, which were blocked not only by 5-HT receptor antagonists (tropisetron, RS39604, and SB269970), antioxidants (ascorbic acid, apocynin), and various inhibitors of NADPH oxidase (DPI), CREB (KG-501), and NF-κB (PDTC), but also by transfection with Nox2 siRNA. Nox2-derived production of ROS corresponded with the rapid and brief activation of Rac. In addition, 5-HT induced Nox2, p67(phox), and Duox2 without altering the level of Nox1 or Duox1 in colon epithelial cells, and silencing of Nox2 suppressed 5-HT-induced Duox2 increase. 5-HT also induced an increase in the expression of MCP-1, IL-8, and ICAM-1 and a decrease in E-cadherin expression. Exogenous application of 5-HT to rat colon through the rectum caused a minimal level of inflammation, which was demonstrated by histological examination, MPO activity, and inflammatory cytokine induction. However, 5-HT combined with a low dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS), the level of which caused a minimal level of colitis, exaggerated colon inflammation accompanied by much more enhanced induction of inflammatory cytokines, IL-6, IL-8, and MCP-1, indicating that colon epithelial cells directly exposed to 5-HT are primed toward inflammation. In the colon at the lesion site, treatment with 5-HT resulted in an increase in the level of epithelial Nox2 but not of constitutively expressed Nox1, which is the opposite result of TNBS treatment. Furthermore, 5-HT treatment of Nox2-knockout mice did not induce colon inflammation, in contrast to 5-HT-treated wild-type mice. The results demonstrate that colon epithelial cells directly exposed to 5-HT are primed for inflammatory reactions, which is an important innate immune response, and the underlying mechanism for the priming is associated with Nox2-activated signaling pathways, including ERK/p38 MAPK, NF-κB, and CREB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app