JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced vascular endothelial growth factor and capillary density in the occipital cortex in dementia with Lewy bodies.

Brain Pathology 2014 July
In dementia with Lewy bodies (DLB), blood flow tends to be reduced in the occipital cortex. We previously showed elevated activity of the endothelin and angiotensin pathways in Alzheimer's disease (AD). We have measured endothelin-1 (ET-1) level and angiotensin-converting enzyme (ACE) activity in the occipital cortex in DLB and control brains. We also measured vascular endothelial growth factor (VEGF); factor VIII-related antigen (FVIIIRA) to indicate microvessel density; myelin-associated glycoprotein (MAG), a marker of ante-mortem hypoperfusion; total α-synuclein (α-syn) and α-synuclein phosphorylated at Ser129 (α-syn-p129). In contrast to findings in AD, ACE activity and ET-1 level were unchanged in DLB compared with controls. VEGF and FVIIIRA levels were, however, significantly lower in DLB. VEGF correlated positively with MAG concentration (in keeping with a relationship between reduction in VEGF and hypoperfusion), and negatively with α-syn and α-syn-p129 levels. Both α-syn and α-syn-p129 levels increased in human SH-SY5Y neuroblastoma cells after oxygen-glucose deprivation (OGD), and VEGF level was reduced in SH-SY5Y cells overexpressing α-syn. Taken together, our findings suggest that reduced microvessel density rather than vasoconstriction is responsible for lower occipital blood flow in DLB, and that the loss of microvessels may result from VEGF deficiency, possible secondary to the accumulation of α-syn.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app