JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An endoplasmic reticulum trafficking signal regulates surface expression of β4 subunit of a voltage- and Ca²⁺-activated K⁺ channel.

Brain Research 2014 March 18
Voltage-dependent and calcium-activated K⁺ (MaxiK, BK) channels are widely expressed in many tissues and organs where they play various physiological roles. Here we report discovery of a functional trafficking signal in MaxiK channel accessory β4 subunit that could regulate activity of MaxiK α subunit (hSlo) on the plasma membrane. We demonstrate that β4 is mostly retained within the cell and removal or mutation of β4 trafficking signal significantly enhances its surface expression in HEK293T expression system. In hippocampal slices and cultured neurons we also observed significant β4 expressions within the neurons. Finally, we show that unlike SV1 and β1 subunits, β4 shows no dominant-negative effect on MaxiK channel α subunit. Taken together, we propose β4 subunit of MaxiK channel is mostly retained within the cells without interfering with other subunits. Removal of β4 retention signal increases its surface expression that may lead to reduction of the MaxiK channel activity and neuronal excitability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app