JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cyclophosphamide-induced alterations of the micturition reflex in a novel in situ urinary bladder model in the anesthetized rat.

AIMS: Cyclophosphamide-induced cystitis alterations have been reported to occur both at efferent and afferent level in the micturition reflex arc. In particular, the stretching of the bladder wall causing urothelial release of ATP has been proposed as one of the pivotal mechanisms causing these alterations. To evaluate functional changes at efferent and afferent levels of the micturition reflex following cyclophosphamide treatment we have applied a novel in situ half bladder rat model.

METHODS: Male Sprague-Dawley rats were treated with either saline or cyclophosphamide (100 mg/kg), and stretch-, electric-, methacholine-, and ATP-induced responses were thereafter measured at 60-72 hr postinjection under pentobarbitone anesthesia. In the novel in situ half bladder model, the urinary bladder was prepared via a midline incision, where the two halves were separated all the way to the urethra as previously described.

RESULTS: Following bladder stretch of 30-80 mN, of the half that was not used for tension measurement, the cyclophosphamide-treated animals evoked significant two- to threefold larger contractile responses as compared to saline-treated control animals. A sensitization of the afferent arm was shown in cyclophosphamide-treated animals, since afferent stimulation evoked similar responses as in control animals despite that the efferent pelvic nerve stimulation displayed a lower contraction-frequency relationship in cyclophosphamide-treated animals. Atropine reduced the stretch(reflex)-evoked contraction by up to 50% in control and 75-80% in cyclophosphamide-treated rats. Subsequent addition of PPADS further reduced the contractions.

CONCLUSION: The micturition reflex response is increased following cyclophosphamide-induced cystitis, as compared to control. The likely cause is sensitization at mechanosensor level in the micturition arc, which overrides the decrement of the efferent cholinergic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app