Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of differentially expressed proteins in porcine alveolar macrophages infected with virulent/attenuated strains of porcine reproductive and respiratory syndrome virus.

The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is still a serious threat to the swine industry. However, the pathogenic mechanism of HP-PRRSV remains unclear. We infected host porcine alveolar macrophages (PAMs) with the virulent HuN4 strain and the attenuated HuN4-F112 strain and then utilized fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) to screen for intracellular proteins that were differentially expressed in host cells infected with the two strains. There were 153 proteins with significant different expression (P<0.01) observed, 42 of which were subjected to mass spectrometry, and 24 proteins were identified. PAM cells infected with the virulent strain showed upregulated expression of pyruvate kinase M2 (PKM2), heat shock protein beta-1 (HSPB1), and proteasome subunit alpha type 6 (PSMA6), which were downregulated in cells infected with the attenuated strain. The upregulation of PKM2 provides sufficient energy for viral replication, and the upregulation of HSPB1 inhibits host cell apoptosis and therefore facilitates mass replication of the virulent strain, while the upregulation of PSMA6 facilitates the evasion of immune surveillance by the virus. Studying on those molecules mentioned above may be able to help us to understand some unrevealed details of HP-PRRSV infection, and then help us to decrease its threat to the swine industry in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app