Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells.

Induced pluripotent stem cells (iPSCs) have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs) that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR) gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app