Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Modulation of hypoxia-signaling pathways by extracellular linc-RoR.

Resistance to adverse environmental conditions, such as hypoxia, contributes to the reduced efficacy of anticancer therapies and tumor progression. Although deregulated expression of many long noncoding RNA (lncRNA) occurs in human cancers, the contribution of such RNA to tumor responses to hypoxia are unknown. RNA expression profiling identified several hypoxia-responsive lncRNAs, including the long intergenic noncoding RNA, regulator of reprogramming (linc-RoR), which is also increased in expression in malignant liver cancer cells. Linc-RoR expression was increased in hypoxic regions within tumor cell xenografts in vivo. Tumor cell viability during hypoxia was reduced by small interfering RNA (siRNA) to linc-RoR. Compared with controls, siRNA to linc-RoR decreased phosphorylation of p70S6K1 (RPS6KB1), PDK1 and HIF-1α protein expression and increased expression of the linc-RoR target microRNA-145 (miR-145). Linc-RoR was highly expressed in extracellular RNA released by hepatocellular cancer (HCC) cells during hypoxia. Incubation with extracellular vesicle preparations containing extracellular RNA increased linc-RoR, HIF-1α expression and cell survival in recipient cells. These studies show that linc-RoR is a hypoxia-responsive lncRNA that is functionally linked to hypoxia signaling in HCC through a miR-145-HIF-1α signaling module. Furthermore, this work identifies a mechanistic role for the extracellular transfer of linc-RoR in intercellular signaling to promote cell survival during hypoxic stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app