Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Ethanol fermentation of energy beets by self-flocculating and non-flocculating yeasts.

Specialized varieties of sugar beets (Energy Beets™) are being developed for producing industrial sugars in Arkansas' Mississippi River Delta. To evaluate their suitability for producing regional fermentation feedstocks, we report initial cultivation trials and ethanol fermentation of raw beet juice and combined juice with pulp mash (JPM) liquefied with enzymes, comparing ethanol yields under different regimes by self-flocculating and non-flocculating yeasts. Nine varieties produced root yields averaging 115Mg/ha and 18.5% sucrose contents. Raw beet juice fermentation yielded ethanol up to 0.48g/g (sugar). JPM was directly fermented through either a sequential (SeqSF) or simultaneous saccharification and fermentation (SSF) process. For both yeast types, SSF was a more efficient process than SeqSF, with ethanol yields up to 0.47g/g (sugar) and volumetric productivity up to 7.81g/L/h. These results indicate the self-flocculating yeast is suitable for developing efficient bioprocesses to ferment industrial sugar from energy beets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app