Add like
Add dislike
Add to saved papers

Air, bone and soft tissue excitation of the cochlea in the presence of severe impediments to ossicle and window mobility.

Clinical conditions have been described in which one of the two cochlear windows is immobile (otosclerosis) or absent (round window atresia), but nevertheless bone conduction (BC) thresholds are relatively unaffected. To clarify this apparent paradox, experimental manipulations which would severely impede several of the classical osseous mechanisms of BC were induced in fat sand rats, including discontinuity or immobilization of the ossicular chain, coupled with window fixation. Effects of these manipulations were assessed by recording auditory nerve brainstem evoked response (ABR) thresholds to stimulation by air conduction (AC), by osseous BC and by non-osseous BC (also called soft tissue conduction-STC) in which the BC bone vibrator is applied to skin sites. Following the immobilization, discontinuity and window fixation, auditory stimulation was also delivered to cerebro-spinal fluid (CSF) and to saline applied to the middle ear cavity. While the manipulations (immobilization, discontinuity, window fixation) led to an elevation of AC thresholds, nevertheless, there was no change in osseous and non-osseous BC thresholds. On the other hand, ABR could be elicited in response to fluid pressure stimulation to CSF and middle ear saline, even in the presence of the severe restriction of ossicular chain and window mobility. The results of these experiments in which osseous and non-osseous BC thresholds remained unchanged in the presence of severe restriction of the classical middle ear mechanisms and in the absence of an efficient release window, while ABR could be recorded in response to fluid pressure auditory stimulation to fluid sites, indicate that it is possible that the inner ear may be activated at low sound intensities by fast fluid pressure stimulation. At higher sound intensities, a slower passive basilar membrane traveling wave may serve to excite the inner ear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app