Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of pH on nifekalant-induced electrophysiological change assessed in the Langendorff heart model of guinea pigs.

Since information regarding the effects of pH on the extent of nifekalant-induced repolarization delay and torsades de pointes remains limited, we assessed it with a Langendorff heart model of guinea pigs. First, we investigated the effects of pH change from 7.4 to 6.4 on the bipolar electrogram simulating surface lead II ECG, monophasic action potential (MAP), effective refractory period (ERP), and terminal repolarization period (TRP) and found that acidic condition transiently enhanced the ventricular repolarization. Next, we investigated the effects of pH change from 6.4 to 7.4 in the presence of nifekalant (10 μM) on the ECG, MAP, ERP, TRP, and short-term variability (STV) of MAP90 and found that the normalization of pH prolonged the MAP90 and ERP while the TRP remained unchanged, suggesting the increase in electrical vulnerability of the ventricle. Meanwhile, the STV of MAP90 was the largest at pH 6.4 in the presence of nifekalant, indicating the increase in temporal dispersion of repolarization, which gradually decreased with the return of pH to 7.4.Thus, a recovery period from acidosis might be more dangerous than during the acidosis, because electrical vulnerability may significantly increase for this period while temporal dispersion of repolarization remained increased.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app