Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Brainstem mechanisms controlling cardiovascular reflexes in channel catfish.

Microinjections of kynurenic acid and kainic acid into the general visceral nucleus (nGV), homologous to the mammalian nucleus tractus solitarius of the medulla, in anesthestized, spontaneously breathing catfish were used to identify central areas and mechanisms controlling resting normoxic heart rate and blood pressure and the cardiovascular responses to hypoxia. Kynurenic acid, an antagonist of ionotropic glutamate receptors, significantly reduced resting normoxic heart rate but did not block the bradycardia associated with aquatic hypoxia. Kainic acid (an excitotoxic glutamatergic receptor agonist) also significantly reduced normoxic heart rate, but blocked the hypoxia-induced bradycardia. Neither kynurenic acid nor kainic acid microinjections affected blood pressure in normoxia or hypoxia. The results of this study indicate that glutamatergic receptors in the nGV are involved in the maintenance of resting heart rate and the destruction of these neurons with kainic acid abolishes the bradycardia associated with aquatic hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app