JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Emergence of semiology in epileptic seizures.

Semiology, the manifestation of epilepsy, is dependent upon electrical activity produced by epileptic seizures that are organized within existing neural pathways. Clinical signs evolve as the epileptic discharge spreads in both time and space. Studying the relation between these, of which the temporal component is at least as important as the spatial one, is possible using anatomo-electro-clinical correlations of stereoelectroencephalography (SEEG) data. The period of semiology production occurs with variable time lag after seizure onset and signs then emerge more or less rapidly depending on seizure type (temporal seizures generally propagating more slowly and frontal seizures more quickly). The subset of structures involved in semiological production, the "early spread network", is tightly linked to those constituting the epileptogenic zone. The level of complexity of semiological features varies according to the degree of involvement of the primary or associative cortex, with the former having a direct relation to peripheral sensory and motor systems with production of hallucinations (visual and auditory) or elementary sensorimotor signs. Depending on propagation pattern, these signs can occur in a "march" fashion as described by Jackson. On the other hand, seizures involving the associative cortex, having a less direct relation with the peripheral nervous system, and necessarily involving more widely distributed networks manifest with altered cognitive and/or behavioral signs whose neural substrate involves a network of cortical structures, as has been observed for normal cognitive processes. Other than the anatomical localization of these structures, the frequency of the discharge is a crucial determinant of semiological effect since a fast (gamma) discharge will tend to deactivate normal function, whereas a slower theta discharge can mimic physiological function. In terms of interaction between structures, the degree of synchronization plays a key role in clinical expression, as evidenced, for example, by studies of ictal fear-related behavior (decorrelation of activity between structures inducing "release" phenomena) and of déjà vu (increased synchronization). Studies of functional coupling within networks underlying complex ictal behavior indicate that the clinical semiology of a given seizure depends upon neither the anatomical origin of ictal discharge nor the target areas of its propagation alone but on the dynamic interaction between these. Careful mapping of the ictal network in its full spread offers essential information as to the localization of seizure onset, by deducing that a given network configuration could only be generated by a given area or group of areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app