JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The acute inhibitory effect of iodide excess on sodium/iodide symporter expression and activity involves the PI3K/Akt signaling pathway.

Endocrinology 2014 March
Iodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity. Here, we reported that the treatment of PCCl3 cells with I(-) excess increased Akt phosphorylation under normal or TSH/insulin-starving conditions. I(-) stimulated Akt phosphorylation in a PI3K-dependent manner, because the use of PI3K inhibitors (wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) abrogated the induction of I(-) effect. Moreover, I(-) inhibitory effect on NIS expression and function were abolished when the cells were previously treated with specific inhibitors of PI3K or Akt (Akt1/2 kinase inhibitor). Importantly, we also found that the effect of I(-) on NIS expression involved the generation of reactive oxygen species (ROS). Using the fluorogenic probes dihydroethidium and mitochondrial superoxide indicator (MitoSOX Red), we observed that I(-) excess increased ROS production in thyrocytes and determined that mitochondria were the source of anion superoxide. Furthermore, the ROS scavengers N-acetyl cysteine and 2-phenyl-1,2-benzisoselenazol-3-(2H)-one blocked the effect of I(-) on Akt phosphorylation. Overall, our data demonstrated the involvement of the PI3K/Akt signaling pathway as a novel mediator of the I(-)-induced thyroid autoregulation, linking the role of thyroid oxidative state to the Wolff-Chaikoff effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app