Add like
Add dislike
Add to saved papers

Mechanistic Studies on the Reaction of Nitrocobalamin with Glutathione: Kinetic evidence for formation of an aquacobalamin intermediate.

The essential but also toxic gaseous signaling molecule nitric oxide is scavenged by the reduced vitamin B12 complex cob(II)alamin. The resulting complex, nitroxylcobalamin (NO(-)-Cbl(III)), is rapidly oxidized to nitrocobalamin (NO2Cbl) in the presence of oxygen; however it is unlikely that nitrocobalamin is itself stable in biological systems. Kinetic studies on the reaction between NO2Cbl and the important intracellular antioxidant, glutathione (GSH), are reported. In this study, a reaction pathway is proposed in which the β-axial ligand of NO2Cbl is first substituted by water to give aquacobalamin (H2OCbl(+)), which then reacts further with GSH to form glutathionylcobalamin (GSCbl). Independent measurements of the four associated rate constants k1, k-1, k2, and k-2 support the proposed mechanism. These findings provide insight into the fundamental mechanism of ligand substitution reactions of cob(III)alamins with inorganic ligands at the β-axial site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app