JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy?

Proliferative vitreoretinopathy (PVR) is a blinding disorder that occurs in eyes with rhegmatogenous retinal detachment and in eyes that have recently undergone retinal detachment surgery. There are presently no treatment strategies to reduce the risk of developing PVR in eyes with retinal detachment, and surgical intervention is the only option for eyes with retinal detachment and established PVR. Given the poor visual outcome associated with the surgical treatment of PVR, considerable work has been done to identify pharmacologic agents that could antagonize the PVR process. Intensive efforts to identify molecular determinants of PVR implicate vitreal growth factors. A surprise that emerged in the course of testing the 'growth factor hypothesis' of PVR was the existence of a functional relationship amongst growth factors that engage platelet-derived growth factor (PDGF) receptor α (PDGFRα), a receptor tyrosine kinase that is key to pathogenesis of experimental PVR. Vascular endothelial cell growth factor A (VEGF), which is best known for its ability to activate VEGF receptors (VEGFRs) and induce permeability and/or angiogenesis, enables activation of PDGFRα by a wide spectrum of vitreal growth factors outside of the PDGF family (non-PDGFs) in a way that triggers signaling events that potently enhance the viability of cells displaced into vitreous. Targeting these growth factors or signaling events effectively neutralizes the bioactivity of PVR vitreous and prevents PVR in a number of preclinical models. In this review, we discuss recent conceptual advances in understanding the role of growth factors in PVR, and consider the tangible treatment strategies for clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app