Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hematopoiesis toxicity induced by CdTe quantum dots determined in an invertebrate model organism.

Biomaterials 2014 March
Quantum dots (QDs) have gained significant attention due to their superior optical properties and wide usage in biological and biomedical studies. In recent years, there has been intense concern regarding the in vivo toxicity of QDs. This study was undertaken to examine the toxicity of CdTe QDs on hematopoiesis in an invertebrate model organism, Bombyx mori. Vascular injection of sub-lethal doses of QDs in B. mori larvae caused time- and dose-dependent damage in the hematopoietic organ and hematocytes. QDs with the maximum emission wavelength of 530 nm (QDs530) were quickly observed in cystocytes and plasmacytes, and gradually bleached their green fluorescence, followed by a decrease in peripheral hematocytes. Additionally, the proportion of abnormal hematocytes increased. In marked contrast, QDs with the maximum emission wavelength of 720 nm (QDs720) were quickly surrounded by hematocytes and subsequently enriched in cystocytes like the human's leukocytes, but with weaker cytotoxicity. QDs exposure promoted the mitotic nucleus in prohemocytes and hematocytes similar to peripheral blood stem cells in humans, but aggravated apoptosis. A decrease in hematopoiesis was accompanied by shrinkage and death of hematopoietic organs via an increase in reactive oxygen species. QDs with smaller size resulted in more severe hematopoiesis toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app