JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Loss of dystrophin and β-sarcoglycan significantly exacerbates the phenotype of laminin α2 chain-deficient animals.

The adhesion molecule laminin α2 chain interacts with the dystrophin-glycoprotein complex, contributes to normal muscle function, and protects skeletal muscles from damage. Complete loss of the laminin α2 chain in mice results in a severe muscular dystrophy phenotype and death at approximately 3 weeks of age. However, it is not clear if the remaining members of the dystrophin-glycoprotein complex further protect laminin α2 chain-deficient skeletal muscle fibers from degeneration. Hence, we generated mice deficient in laminin α2 chain and dystrophin (dy(3K)/mdx) and mice devoid of laminin α2 chain and β-sarcoglycan (dy(3K)/Sgcb). Severe muscular dystrophy and a lack of nourishment inevitably led to massive muscle wasting and death in double-knockout animals. The dy(3K)/Sgcb mice were generally more severely affected than dy(3K)/mdx mice. However, both double-knockout strains displayed exacerbated muscle degeneration, inflammation, fibrosis, and reduced life span (5 to 13 days) compared with single-knockout animals. However, neither extraocular nor cardiac muscle was affected in double-knockout animals. Our results suggest that, although laminin α2 chain, dystrophin, and β-sarcoglycan are all part of the same adhesion complex, they have complementary, but nonredundant, roles in maintaining sarcolemmal integrity and protecting skeletal muscle fibers from damage. Moreover, the double-knockout mice could potentially serve as models in which to study extremely aggressive muscle-wasting conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app