Add like
Add dislike
Add to saved papers

Betatrophin: A liver-derived hormone for the pancreatic β-cell proliferation.

World Journal of Diabetes 2013 December 16
The pancreatic β-cell failure which invariably accompanies insulin resistance in the liver and skeletal muscle is a hallmark of type-2 diabetes mellitus (T2DM). The persistent hyperglycemia of T2DM is often treated with anti-diabetic drugs with or without subcutaneous insulin injections, neither of which mimic the physiological glycemic control seen in individuals with fully functional pancreas. A sought after goal for the treatment of T2DM has been to harness the regenerative potential of pancreatic β-cells that might obviate a need for exogenous insulin injections. A new study towards attaining this aim was reported by Yi et al, who have characterized a liver-derived protein, named betatrophin, capable of inducing pancreatic β-cell proliferation in mice. Using a variety of in vitro and in vivo methods, Yi et al, have shown that betatrophin was expressed mainly in the liver and adipose tissue of mice. Exogenous expression of betatrophin in the liver led to dramatic increase in the pancreatic β-cell mass and higher output of insulin in mice that also concomitantly elicited improved glucose tolerance. The authors discovered that betatrophin was also present in the human plasma. Surprisingly, betatrophin has been previously described by three other names, i.e., re-feeding-induced fat and liver protein, lipasin and atypical angiopoeitin-like 8, by three independent laboratories, as nutritionally regulated liver-enriched factors that control serum triglyceride levels and lipid metabolism. Yi et al demonstration of betatrophin, as a circulating hormone that regulates β-cell proliferation, if successfully translated in the clinic, holds the potential to change the course of current therapies for diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app