JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes.

BACKGROUND: Supplemental oxygen used during resuscitation can be detrimental to the newborn brain. The aim was to determine how different oxygen therapies affect gene transcription in a hypoxia-reoxygenation model.

METHODS: C57BL/6 mice (n = 56), postnatal day 7, were randomized either to 120 min of hypoxia 8% O2 followed by 30 min of reoxygenation with 21, 40, 60, or 100% O2, or to normoxia followed by 30 min of 21 or 100% O2. Affymetrix 750k expression array was applied with RT-PCR used for validation. Histopathology and immunohistochemistry 3 d after hypoxia-reoxygenation compared groups reoxygenated with 21 or 100% O2 with normoxic controls (n = 22).

RESULTS: In total, ~81% of the gene expression changes were altered in response to reoxygenation with 60 or 100% O2 and constituted many inflammatory-responsive genes (i.e., C5ar2, Stat3, and Ccl12). Oxidative phosphorylation was downregulated after 60 or 100% O2. Iba1(+) cells were significantly increased in the striatum and hippocampal CA1 after both 21 and 100% O2.

CONCLUSION: In the present model, hypoxia-reoxygenation induces microglial accumulation in subregions of the brain. The transcriptional changes dominating after applying hyperoxic reoxygenation regimes include upregulating genes related to inflammatory responses and suppressing the oxidative phosphorylation pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app