Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Growth feedback as a basis for persister bistability.

A small fraction of cells in many bacterial populations, called persisters, are much less sensitive to antibiotic treatment than the majority. Persisters are in a dormant metabolic state, even while remaining genetically identical to the actively growing cells. Toxin and antitoxin modules in bacteria are believed to be one possible cause of persistence. A two-gene operon, HipBA, is one of many chromosomally encoded toxin and antitoxin modules in Escherichia coli and the HipA7 allelic variant was the first validated high-persistence mutant. Here, we present a stochastic model that can generate bistability of the HipBA system, via the reciprocal coupling of free HipA to the cellular growth rate. The actively growing state and the dormant state each correspond to a stable state of this model. Fluctuations enable transitions from one to the other. This model is fully in agreement with experimental data obtained with synthetic promoter constructs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app