JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nutrient deprivation increases vulnerability of endothelial cells to proinflammatory insults.

Nutrient deprivation is a stimulus for oxidative stress and is an established method for induction of cell autophagy and apoptosis. The aims of this study were to identify conditions that evoke superoxide production in cultured human umbilical vein endothelial cells (HUVECs), determine the mechanism of action for this response, and examine whether the stimulus might facilitate the adhesion of human isolated neutrophils to the HUVECs. HUVECs were incubated in M199 medium under conditions of serum starvation (serum-free M199 medium), low serum (medium containing 2% fetal calf serum), and high serum (medium containing 20% fetal calf serum). HUVECs were also incubated under proinflammatory conditions, in medium supplemented with 50ng/ml tumor necrosis factor-α (TNF-α) or neutrophils preactivated with 10nM phorbol 12-myristate 13-acetate (PMA). Superoxide production was increased fourfold in serum-starved HUVECs compared to cells incubated in 20% medium, and this was reduced by inhibitors of the mitochondrial electron transport chain and mitochondrial Ca(2+) uniporter. Superoxide production was 23.6% higher in HUVECs incubated with TNF-α in 2% medium compared to 2% medium alone, but unchanged with TNF-α in 20% medium. PMA-activated neutrophils adhered to morphologically aberrant HUVECs, which were mainly evident under the low-serum condition. The findings show a role of mitochondrial enzymes in superoxide production in response to nutrient deprivation and suggest that proinflammatory responses in HUVECs become manifest when HUVECs are in an already-compromised state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app