Add like
Add dislike
Add to saved papers

Functional characterisation of a purified homogeneous Photosystem II core complex with high oxygen evolution capacity from spinach.

The functional properties of a purified homogeneous spinach PS II-core complex with high oxygen evolution capacity (Haag et al. 1990a) were investigated in detail by measuring thermoluminescence and oscillation patterns of flash induced oxygen evolution and fluorescence quantum yield changes. The following results were obtained: a) Depending on the illumination conditions the PS II-core complexes exhibit several thermoluminescence bands corresponding to the A band, Q band and Zv band in PS II membrane fragments. The lifetime of the Q band (Tmax=10°C) was determined to be 8s at T=10°C. No B band corresponding to S2QB (-) or S3QB (-) recombination could be detected. b) The flash induced transient fluorescence quantum yield changes exhibit a multiphasi relaxation kinetics shich reflect the reoxidation of Q A (-) . In control samples without exogenous acceptors this process is markedly slower than in PS II membrane fragments. The reaction becomes significantly retarded by addition of 10 μM DCMU. After dark incubation in the presence of K3[Fe(CN)6 c) Excitation of dark-adapted samples with a train of short saturating flashes gives rise to a typical pattern dominated by a high O2 yield due to the third flash and a highly damped period four oscillation. The decay of redox states S2 and S3 are dominated by short life times of 4.3 s and 1.5 s, respectively, at 20°C. The results of the present study reveal that in purified homogeneous PS II-core complexes with high oxygen evolution isolated from higher plants by β-dodecylmaltoside solubilization the thermodynamic properties and the kinetic parameters of the redox groups leading to electron transfer from water to QA are well preserved. The most obvious phenomenon is a severe modification of the QB binding site. The implications of this finding are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app