Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Noninvasive cardiac output measurement by inert gas rebreathing in suspected pulmonary hypertension.

The objective of this study was to evaluate inert gas rebreathing (IGR) reliability in cardiac output (CO) measurement compared with Fick method and thermodilution. IGR is a noninvasive method for CO measurement; CO by IGR is calculated as pulmonary blood flow plus intrapulmonary shunt. IGR may be ideal for follow-up of patients with pulmonary hypertension (PH), sparing the need of repeated invasive right-sided cardiac catheterization. Right-sided cardiac catheterization with CO measurement by thermodilution, Fick method, and IGR was performed in 125 patients with possible PH by echocardiography. Patients were grouped according to right-sided cardiac catheterization-measured mean pulmonary and wedge pressures: normal pulmonary arterial pressure (n = 20, mean pulmonary arterial pressure = 18 ± 3 mm Hg, pulmonary capillary wedge pressure = 11 ± 5 mm Hg), PH and normal pulmonary capillary wedge pressure (PH-NW, n = 37 mean pulmonary arterial pressure = 42 ± 13 mm Hg, pulmonary capillary wedge pressure = 11 ± 6 mm Hg), and PH and high pulmonary capillary wedge pressure (PH-HW, n = 68, mean pulmonary arterial pressure = 37 ± 9 mm Hg, pulmonary capillary wedge pressure = 24 ± 6 mm Hg). Thermodilution and Fick measurements were comparable. Fick and IGR agreement was observed in normal pulmonary arterial pressure (CO = 4.10 ± 1.14 and 4.08 ± 0.97 L/min, respectively), whereas IGR overestimated Fick in patients with PH-NW and those with PH-HW because of intrapulmonary shunting overestimation in hypoxemic patients. When patients with arterial oxygen saturation (SO2) ≤90% were excluded, IGR and Fick agreement improved in PH-NW (CO = 4.90 ± 1.70 and 4.76 ± 1.35 L/min, respectively) and PH-HW (CO = 4.05 ± 1.04 and 4.10 ± 1.17 L/min, respectively). In hypoxemic patients, we estimated pulmonary shunt as Fick - pulmonary blood flow and calculated shunt as: -0.2423 × arterial SO2 + 21.373 L/min. In conclusion, IGR is reliable for CO measurement in patients with PH with arterial SO2 >90%. For patients with arterial SO2 ≤90%, a new formula for shunt calculation is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app