Add like
Add dislike
Add to saved papers

Novel three-dimensional coordination polymers of lanthanides with sulfate and oxydiacetic acid.

Three three-dimensional coordination polymers, viz. poly[[diaqua-μ4-oxydiacetato-di-μ4-sulfato-dipraseodymium(III)] hemihydrate], [Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2O, (I), poly[[diaquadi-μ3-oxydiacetato-μ3-sulfato-dineodymium(III)] 1.32-hydrate], [Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (II), and poly[[diaquadi-μ3-oxydiacetato-μ3-sulfato-disamarium(III)] 1.32-hydrate], [Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (III), were obtained by hydrothermal reactions of the respective lanthanide oxides and ZnSO4 with oxydiacetic acid (odaH2). The Nd(3+) and Sm(3+) compounds form isomorphous crystal structures in which the lanthanide cations are nine-coordinate, having a tricapped trigonal prismatic coordination. The Pr(3+) compound has an entirely different crystal structure in which two types of coordination polyhedra are observed, viz. nine-coordinate (trigonal prism) and ten-coordinate (bicapped square antiprism). The sulfate anions show various coordination modes, one of which has only rarely been observed crystallographically to date.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app