JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats.

Pain Medicine 2014 June
OBJECTIVE: Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear.

METHOD: In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses.

RESULTS: We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28.

CONCLUSION: These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app