Add like
Add dislike
Add to saved papers

Transport Reversal during Heteroexchange: A Kinetic Study.

It is known that secondary transporters, which utilize transmembrane ionic gradients to drive their substrates up a concentration gradient, can reverse the uptake and instead release their substrates. Unfortunately, the Michaelis-Menten kinetic scheme, which is popular in transporter studies, does not include transporter reversal, and it completely neglects the possibility of equilibrium between the substrate concentrations on both sides of the membrane. We have developed a complex two-substrate kinetic model that includes transport reversal. This model allows us to construct analytical formulas allowing the calculation of a "heteroexchange" and "transacceleration" using standard Michaelis coefficients for respective substrates. This approach can help to understand how glial and other cells accumulate substrates without synthesis and are able to release such substrates and gliotransmitters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app