JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intrinsic viscoelasticity increases temperature in knee cartilage under physiological loading.

Metabolism of proteoglycans and hyaluronic acid has been shown to be temperature-dependent in cartilage explants, with optimal anabolic effects between 36°C and 38°C. At rest, the temperature of human knee has a value of around 33°C. We aim to show in this study that viscoelastic properties of healthy human cartilage allow its temperature to reach those optimal temperatures during physiological mechanical loadings. We developed a model allowing to determine the temperature increase in cartilage due to viscous dissipation. The model had three parameters, which were determined experimentally. The first parameter was the energy dissipated by cartilage samples submitted to cyclic stimulation. It was obtained with standard in vitro mechanical testing. The second parameter was the cartilage heat capacity and was measured in vitro with differential scanning calorimetry. Finally, the third parameter was the time constant of cartilage heat transfer and was obtained with in vivo magnetic resonance thermometry performed on four volunteers. With these experimentally determined parameters, the model predicted that cartilage dissipation is sufficient to raise the temperature in healthy knee cartilage from 33°C to 36.7°C after a 1h walking. These results showed that intrinsic viscoelastic properties of the cartilage could induce a temperature increase optimal for the production of proteoglycans and hyaluronic acid. Interestingly, degenerated cartilage did not present high enough viscoelastic properties to significantly induce a temperature increase. Taken together, these data suggest an association between cartilage dissipation and its homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app