Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2.

Cellular Immunology 2013 November
Helicobacter pylori encoded CagA is presently the only known virulence factor that is injected into gastric epithelial cells where it destroys apical junctional complexes and induces dedifferentiation of gastric epithelial cells, leading to H. pylori-related gastric carcinogensis. However, little is known about the molecular mechanisms by which CagA mediates these changes. Caudal-related homeobox 2 (Cdx2) is an intestine-specific transcription factor highly expressed in multistage tissues of dysplasia and cancer. One specific target of Cdx2, Claudin-2, is involved in the regulation of tight junction (TJ) permeability. In this study, our findings showed that the activity of Cdx2 binding to Cdx binding sites of CdxA (GTTTATG) and CdxB (TTTTAGG) of probes corresponding to claudin-2 flanking region increased in AGS cells, infected with CagA positive wild-type strain of H. pylori, compared to CagA negative isogenic mutant-type strain. Moreover, Cdx2 upregulated claudin-2 expression at transcriptional level and translational level. In the meantime, we found that TJs of AGS cells, infected with CagA positive wild-type strain of H. pylori, compared to CagA negative isogenic mutant-type strain, were more severely destroyed, leading to wider cell gap, interference of contact, scattering and highly elevated migration of cells. Herein, this study is firstly demonstrated that H. pylori-encoded CagA disrupts TJs and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. This provides a new mechanism whereby CagA induced dedifferentiation of AGS cells, leading to malignant behavior of biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app