Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Leg stiffness and joint stiffness while running to and jumping over an obstacle.

Journal of Biomechanics 2014 January 23
During running, muscles of the lower limb act like a linear spring bouncing on the ground. When approaching an obstacle, the overall stiffness of this leg-spring system (k(leg)) is modified during the two steps preceding the jump to enhance the movement of the center of mass of the body while leaping the obstacle. The aim of the present study is to understand how k(leg) is modified during the running steps preceding the jump. Since k(leg) depends on the joint torsional stiffness and on the leg geometry, we analyzed the changes in these two parameters in eight subjects approaching and leaping a 0.65 m-high barrier at 15 km h(-1). Ground reaction force (F) was measured during 5-6 steps preceding the obstacle using force platform and the lower limb movements were recorded by camera. From these data, the net muscular moment (M(j)), the angular displacement (θ(j)) and the lever arm of F were evaluated at the hip, knee and ankle. At the level of the hip, the M(j)-θ(j) relation shows that muscles are not acting like torsional springs. At the level of the knee and ankle, the M(j)-θ(j) relation shows that muscles are acting like torsional springs: as compared to steady-state running, the torsional stiffness k(j) decreases from ~1/3 two contacts before the obstacle, and increases from ~2/3 during the last contact. These modifications in k(j) reflect in changes in the magnitude of F but also to changes in the leg geometry, i.e. in the lever arms of F.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app