JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrogen sulfide protects against bleomycin-induced pulmonary fibrosis in rats by inhibiting NF-κB expression and regulating Th1/Th2 balance.

Toxicology Letters 2014 January 31
Hydrogen sulfide (H2S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. The objective of this study was to evaluate the inhibitory effect of H2S on bleomycin (BLM)-induced pulmonary fibrosis in rats and its possible mechanisms. Fifty-four pathogen-free Male Wistar rats were randomly divided into three groups: control, BLM and H2S treated groups with 18 rats in each group. Each group was then divided into three subgroups based on time of study (7, 14 and 28 day). Pulmonary fibrosis model was established by a single intratracheal instillation of BLM A5 (5 mg/kg). While control rats received saline, rats of the treated group simultaneously were administered intraperitoneal injections of NaHS (the H2S donor, 28 μmol/kg) once daily. BLM induced pulmonary inflammation and fibrosis, increased lung hydroxyproline levels, lung index, total cell counts, neutrophils and eosinophils counts and expression of NF-κB p65 in lung tissue, decreased lymphocytes and macrophages counts. In addition, Th1 response is suppressed as shown by diminished IFN-γ in bronchoalveolar lavage fluid (BALF) after BLM exposure, and enhancement of Th2 response is marked by increased IL-4 in BALF. H2S administration significantly attenuated these effects. The findings reveal the therapeutic potential of H2S for BLM-induced pulmonary fibrosis in male rats, which were at least partly due to inhibition NF-κB p65 expression and regulation of Th1/Th2 balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app